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Abstract
Targeted fracture prevention strategies among late-life adults should balance fracture risk versus competing mortality risk. Models
have previously been constructed using Fine-Gray subdistribution methods. We used a machine learning method adapted for com-
peting risk survival time to evaluate candidate risk factors and create models for hip fractures and competing mortality among men
and women aged 80 years and older using data from three prospective cohorts (Study of Osteoporotic Fractures [SOF], Osteoporotic
Fracture in Men study [MrOS], Health Aging and Body Composition study [HABC]). Random forest competing risk models were used
to estimate absolute 5-year risk of hip fracture and absolute 5-year risk of competing mortality (excluding post–hip fracture deaths).
Models were constructed for both outcomes simultaneously; minimal depth was used to rank and select variables for smaller models.
Outcome specificmodels were constructed; variable importance was used to rank and select variables for inclusion in smaller random
forest models. Random forest models were compared to simple Fine-Graymodels with six variables selected a priori. Top variables for
competing risk random forests were frailty and related components inmen while top variables were age, bonemineral density (BMD)
(total hip, femoral neck), and frailty components in women. In both men and women, outcome specific rankings strongly favored
BMD variables for hip fracture prediction while frailty and components were strongly associated with competing mortality. Model
discrimination for random forest models varied from 0.65 for mortality in women to 0.81 for hip fracture in men and depended on
model choice and variables included. Randommodels performed slightly better than simple Fine-Gray model for prediction of com-
peting mortality, but similarly for prediction of hip fractures. Random forests can be used to estimate risk of hip fracture and compet-
ing mortality among the oldest old. Modest gains in performance for mortality without hip fracture compared to Fine-Gray models
must be weighed against increased complexity. © 2023 The Authors. JBMR Plus published byWiley Periodicals LLC on behalf of Amer-
ican Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in
the public domain in the USA.
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Introduction

Targeted fracture prevention strategies among late-life adults
should take into account the competing risk of mortality as it

is materially related to both absolute and relative fracture risks.(1–
3) Although there has been substantial research investigating the
risk factors for hip fracture(4–7) and for mortality post–hip
fracture,(8–11) very little research has been devoted to estimating
the varying magnitude of hip fracture risk versus the competing
risk of mortality without hip fracture among the oldest old. Using
a simple five-variable model estimated using the Fine-Gray
approach,(12) a method derived from survival time which
accounts for the competing risk, we have shown that fracture
and competing mortality have different risk factors in older
men leading to different risk profiles.(13) We sought to extend
and improve this prior work by considering additional risk factors
in a larger and more diverse cohort of late-life adults.

The choice of the modeling approach represents one poten-
tial area of improvement in methodology used to address frac-
ture prediction in late-life. Many studies have considered
machine learning methods applied to fracture risk prediction
by considering fracture as a binary outcome, which presupposes
either cross-sectional data or complete and fixed follow-up.(14–17)

In contrast, there are only a few machine learning methods that
have been developed for use with survival time data with com-
peting risks. Random forests were first introduced by Breiman(18)

as an extension of classification and regression trees and have
subsequently been adapted for use with survival time data and
predictions in the presence of competing risks.(19) Random for-
ests are by their nature nonparametric. Thus, they are extremely
flexible and make few assumptions about the relationships
between variables.

Our primary aim was to use random forest models to select
important risk factors for the 5-year absolute risk of hip fracture
accounting for the competing risk of mortality and the 5-year
absolute risk of mortality (excluding post hip fracture death)
among men and women age 80 years and older. We evaluated
model performance and created simple Fine Gray models for
the purpose of comparison. Our secondary aim was to assess
the advantages and disadvantages of a random forest models
compared to Fine Gray models to generate risk predictions for
fracture and competing mortality.

Subjects and Methods

Participants

We studied community-dwelling participants enrolled in
three prospective cohort studies of older adults: Study of
Osteoporotic Fractures (SOF),(4) Osteoporotic Fracture in Men
study (MrOS),(20,21) and Health Aging and Body Composition
study (HABC). Further details on study site and eligibility are
shown in Table S1. SOF enrolled 9704 community-dwellingwhite
women 65 years and older at four clinical centers in 1986–1988
with expansion of the total cohort to 10,366 women with the
addition of 662 black women 65 years and older at Year
10 (1997–1998). MrOS enrolled 5994 community-dwelling men
65 years and older at six clinical centers in 2000–2002. Health
ABC enrolled 3075 black and white community-dwelling older
adults age 70 to 79 years with no self-report of mobility difficulty
at two clinical centers at the baseline exam (1997–1998). Partici-
pants were eligible for the current study if they were at least
80 years old with measurement of BMD at a clinic examination

(SOF Year 10 or 16, MrOS Year 4.5, 7, 14, and Health ABC Year
3, 5, 6, 8 or 10). Participants were only included once and entered
into the analysis at the examination when they first reached at
least age 80 years (index examination) (Table S2).

Ascertainment of outcomes of hip fracture and mortality
without hip fracture

SOF and MrOS participants were queried every 4 months and
HABC participants every 6 months to ascertain vital status and
incident fractures, including hip fractures. The response rate for
these contacts was over 95% for active surviving participants in
all cohorts. Self-reported hip fractures in all cohorts were con-
firmed by radiographic reports. Deaths were verified with death
certificates. Participant follow-up was included until event (hip
fracture, death) or censoring (maximum 5 years after the index
examination). The mean � SD follow-up time to the first occur-
rence of hip fracture, mortality or censoring was 4.4 � 1.2 years
for both men and women.

Candidate risk factors

Age, self-reported race/ethnicity, recalled height and weight at
age 25 years, and history of fracture after age 50 years were col-
lected at baseline in each cohort. Height, weight, health status,
and smoking status were recorded at each examination. Long-
term height loss was calculated as the difference between mea-
sured height at the index examination and height at age
25 years, whereas current measured weight at index examina-
tion expressed as percentage of self-reported weight at age
25 years indicated direction and magnitude of long-term weight
change. History of fracture at the index examination was deter-
mined based on history of fracture since age 50 years at the
baseline exam and confirmed fractures between the baseline
and index examination and categorized as follows: recent (within
last 5 years), not recent but after age 50 years, and no fracture
after age 50 years. Fall history in the previous year was assessed
using triannual postcards.

Clinic measures at the index examination included compo-
nents of phenotypic frailty; slowness (walk speed <0.6 m/s in
women, <0.8 m/s in men), weakness (grip strength <20 kg in
women, <32 kg in men), poor energy, low physical activity, and
shrinking.(22) Usual walk speed was measured over a 6-m course
in SOF and MrOS and a 4-m course in HABC with the latter reca-
librated to match 6-m gait speed(23) and grip strength was mea-
sured using a hand-held dynamometer. Those unable to perform
the walk speed or grip strength tests were assigned a value of
0 for the continuous measure. Shrinking was defined as recent
weight loss >10 lbs or >5% of baseline weight or current
weight <18.5 kg/m2. Participants also self-reported if they had
poor energy and low physical activity (defined as not walking
for exercise and not engaging in at least moderate physical activ-
ity). Health status at the index examination was self-reported as
excellent, good, fair, poor, or very poor. Time required to stand
from a chair five times without using the arms was measured
and converted to a ratio of stands per second; weakness (chair
stands) was indicated by inability to perform the test. At the
index examination, participants self-reported their ability to walk
two to three blocks on level ground or climb 10 stairs without dif-
ficulty (scored 0), with some difficulty (scored 1), with a lot of dif-
ficulty (score 2), or unable (score 3). The scores for these two
mobility tasks were combined into one variable, ranging from
0 to 6.
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Participants were asked to bring all current prescription med-
ication containers with them to the clinic. Medications were
recorded in an electronic medication inventory database and
matched to its ingredients(s) based on the Iowa Drug informa-
tion Service drug vocabulary (College Pharmacy, University of
Iowa, Iowa City, IA, USA).(24) We considered each medication
class as a candidate predictor variable of incident hip fracture
and mortality without hip fracture based on prior medical litera-
ture review and a biologically plausible mechanism by which
each medication class may be associated with risk of hip fracture
and/or mortality. Candidate medications included: antidepres-
sants, medications for type 2 diabetes, anti-epileptic medications,
angiotensin converting enzyme (ACE) inhibitors, benzodiaze-
pines, beta blockers, angiotensin receptor blockers (ARB), systemic
corticosteroids, calcium channel blockers, H1 receptor antago-
nists, H2 receptor antagonists, loop diuretics, potassium sparing
diuretics, thiazide diuretics, narcotics, proton pump inhibitors, thy-
roid hormone replacement therapy, selective serotonin receptor
inhibitors (SSRIs), and warfarin.

Participants were asked if they had been diagnosed by a
health care provider as having arthritis, breast cancer (women),
prostate cancer (men), cancer, coronary heart disease (angina
or myocardial infarction), stroke, heart failure, diabetes, demen-
tia, depression, and Parkinson’s disease. Participants were con-
sidered to have diabetes, Parkinson’s disease, depression, or
dementia if they either self-reported a physician diagnosis or
were treated with medication used to treat that diagnosis.

BMD at the total hip was measured at the index examination
with dual-energy X-ray absorptiometry (DXA; QDR 4500 W; Holo-
gic, Inc., Bedford, MA, USA) using standardized protocols as
described.(25–27) Extensive quality control procedures were car-
ried out at all examinations including centralized training and
certification of DXA technicians and scanning of a central hip
phantom at each clinical center at regular intervals.

Statistical analysis

All analyses were stratified by sex. The survival data was trun-
cated at 5 years with prediction and outcome calculated at that
time-point. We used random survival forest models (RSFs), a
machine learning approach that uses tree-based models to cre-
ate survival-time predictions accounting for competing risk out-
comes (hip fracture and mortality without hip fracture).(19) RSF
does not assume linearity or functional form and allows for com-
plex interactions between variables. RSF has several component
steps: Step 1: draw bootstrap samples, Step 2: construct tree for
each bootstrap sample using recursive partitioning based on
randomly selected variables and cut-points, Step 3: average
model estimates over all trees to obtain (forest) estimate for full
data. There were two types of forests depending on the splitting
rule in Step 2. To construct a single forest for BOTH outcomes
(hip fracture andmortality without hip fracture), the splitting rule
was based on a modified log-rank test adapted for competing
risks.(28) To construct outcome specific forests, the splitting rule
was based on a log-rank test for the chosen outcome (hip frac-
ture or mortality without hip fracture). Missing values were pre-
sent for some variables. In order to keep all variables under
consideration without limiting the sample to those participants
with complete data for all candidate risk factors, we used ran-
dom forest imputation prior to model construction.(29)

Variable selection for random forests modeling both out-
comes was based on minimal depth (MD)(30) because this mea-
sure is both stable and takes both outcomes into account,

while selection for outcome specific forests was based on vari-
able importance (VIMP)(18) to optimize outcome specific discrim-
ination. Minimal depth for a variable is found by taking distance
from the root of a tree to themaximal subtree with the given var-
iable as the base node. Variables with low minimal depth are
those that better predict outcome status (both hip fracture and
mortality before hip fracture). Permutation VIMP compares the
estimated error from sample data to that where the given vari-
able has been replaced by a new variable which is a random per-
mutation of the original variable. By construction, higher VIMP
indicates greater impact of the given variable on estimated
model error compared to replacement with randomly permuted
(noninformative) variable, and thus greater variable importance.

Model performance was assessed using out-of-bootstrap
sample estimates, ie, model performance corrected for opti-
mism. Each random forest depends on the bootstrap sample
selection and estimated VIMP depends on permutations. Thus,
the set of variables chosen for the final model differ slightly
across different bootstrap samples. Sensitivity analyses were per-
formed to assess dependence of variable selection and model
performance on random seeds. We created parsimonious out-
come specific models by dropping all variables with VIMP
<0.003 in the given model run.

Finally, we created simple Fine-Gray models(12) for the out-
comes of hip fracture and mortality without hip fracture based
on six selected predictors. For simplicity, we started with our pre-
viously published simple model based on five independent vari-
ables: age, femoral neck BMD, prior fracture, fall history, and
number of chronic medical conditions.(13) We added one addi-
tional independent variable to this model, the number of frailty
phenotype components, because it was a single variable sum-
mary of many important predictors in the random forest models.
To keep the Fine-Graymodels parsimonious, we did not consider
higher order terms or interactions. We also assumed constant
subdistribution hazard ratios for ordinal variables.

Analysis was performed using Stata 17 and R (v 4.2.2) using
the R-packages randomForestSRC(31) (version 3.1.1) and ggRan-
domForest, version 2.2.1. Analytic details and sample code pro-
vided in the Supporting Information.

Role of the funding source

The funding agencies had no direct role in the conduct of the
study; the collection, management, analyses and interpretation
of the data; or preparation or approval of the manuscript.

Results

The characteristics at the index examination of the 3989 men
and 4953 women included in the analyses are shown in
Table 1. Among the men, the average age was 82.7 years; mean
weight was 79.4 kg and mean femoral neck BMD T-score was 0.8
(using young female reference data). Of these men, 46.5% had at
least two chronic conditions, 16.4% reported two or more falls in
the last year, 8% experienced a fracture within the past 5 years,
and 18.1% had long-term height loss of at least 8 cm. Among
the women, the average age was 82.6 years; mean weight was
65.4 kg and mean femoral neck BMD T-score was �1.0. Of these
women, 41.1% had at least two chronic conditions, 33.7%
reported two or more falls in the last year, 15.1% experienced a
fracture within the past 5 years, and 21% had long-term height
loss of at least 8 cm. During the 5-year follow-up, 123 (3.1%)
men and 325 (6.6%) women had an incident hip fracture;
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922 (23.1%) men and 824 (16.6%) women died without
experiencing an incident hip fracture.

Variable rankings

Figures 1 and 2 show theMD from the full model predicting both
outcomes and the variable importance for hip fracture derived
from the full model predicting hip fracture model and the vari-
able importance for mortality from the full model predicting
mortality before hip fracture in men, respectively, women.
Table S3 provides the associated ranking of variables from these

models (better predictors have lower ranking). There are clear
differences in rankings between men and women, and between
MD rankings from the model considering both hip fracture and
mortality and VIMP rankings from event specific models. Rank-
ings were robust to random seed, i.e., there was a correlation of
0.99 between MD or VIMP on models with new random seed
compared to original models leading to nearly identical rankings.

Among both men and women, gait speed and weight change
since age 25 years were included in the list of the five variables
with lowest MD based on a random forest designed to predict
both hip fracture and mortality. Among men, the three additional

Table 1. Baseline Characteristics Stratified by Sex

Predictor variables Men (n = 3989) Women (n = 4953)

Age (years), mean � SD 82.7 � 2.7 82.6 � 2.7
Height (cm), mean � SD 172.1 � 6.7 156.9 � 6.1
Weight (kg), mean � SD 79.4 � 12.7 65.4 � 12.7
Current weight as % age 25 weight, mean � SD 111 � 17 117 � 21
Number of frailty components (0 to 5), mean � SD 1.8 � 1.3 2.5 � 1.3
Number of medications (0 to 20, truncated), mean � SD 7.8 � 4.5 6.6 � 3.8
Grip strength (kg), mean � SD 35.3 � 9.7 18.4 � 5.8
Gait speed (m/s), mean � SD 1.07 � 0.24 0.85 � 0.26
Chair stand speed (#/s), mean � SD 0.37 � 0.18 0.32 � 0.19
Total hip BMD (g/cm2), mean � SD 0.929 � 0.148 0.727 � 0.141
Femoral neck BMD (g/cm2), mean � SD 0.756 � 0.134 0.630 � 0.125
Femoral neck BMD T-score, mean � SD �0.8 � 1.1 �1.9 � 1.0
Race/ethnicity, n (%)

White 3478 (87.2) 4402 (88.9)
Black/Other 511 (12.8) 551 (11.1)

Number of chronic conditions, n (%)
None 868 (21.8) 1268 (25.6)
1 1266 (31.7) 1651 (33.3)
2+ 1855 (46.5) 2034 (41.1)

Mobility score (0 to 6), n (%)
0 2986 (75.5) 3104 (63.8)
1 440 (11.1) 612 (12.6)
2+ 528 (13.4) 1153 (23.7)

Fall history (number of falls in 12 months), n (%)
None 2632 (66.0) 3272 (66.3)
1 703 (17.6) 968 (19.6)
2+ 654 (16.4) 697 (14.1)

Fracture history, n (%)
None after age 50 years 2854 (71.5) 2423 (50.4)
After 50 years, >5 years ago 814 (20.4) 1654 (34.4)
Recent (≤5 years ago) 321 (8.0) 727 (15.1)

Smoking history, n (%)
Never 1595 (40.1) 3087 (62.7)
Former 2312 (58.1) 1683 (34.2)
Current 74 (1.9) 152 (3.1)

Height loss since age 25 years, n (%)
<4 cm 1362 (34.2) 1,623 (33.0)
4–8 cm 1903 (47.7) 2260 (46.0)
8 cm or more 722 (18.1) 1032 (21.0)

Self-reported health, n (%)
Excellent 1032 (25.9) 967 (19.6)
Good 2077 (52.2) 2584 (52.4)
Fair/poor/very poor 869 (21.8) 1383 (28.0)

Incident events: (5 years), n (%)
None 2944 (73.8) 3804 (76.8)
Hip fracture 123 (3.1) 325 (6.6)
Death without hip fracture 922 (23.1) 824 (16.6)
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variables with low minimal depth were number of frailty compo-
nents, grip strength, and chair stand speed. In contrast, the three
additional variables with the lowest MD in women were total hip
BMD, femoral neck BMD and age.

Among both men and women, total hip BMD and femoral
neck BMD were each included in the list of five variables with
highest VIMP based on a random forest designed to predict hip
fracture. Among men, the three additional variables with the
highest VIMP for hip fracture prediction included inability to per-
form chair stand test, chair stand speed, and number of medica-
tions, while in women the three additional variables with the
highest VIMP for hip fracture prediction included weight change
since age 25 years, gait speed, and weight.

Among both men and women, gait speed and inability to do
chair stands were included in the list of the five variables with
highest VIMP based on a random forest designed to predict mor-
tality before hip fracture. Among men, the three additional vari-
ables with the highest VIMP for mortality prediction were
number of frailty components, grip strength, and slowness,
whereas in women the three additional variables with the high-
est VIMP were age, weight change since age 25 years and diffi-
culty walking three blocks.

Model performance

The overall performance of the random forest models (full model
including all candidate risk factors andmore parsimoniousmodels
based onMD or VIMP selection criteria) is shown in Table 2. Model
performance as measured by Harrell’s C-statistic depended upon
sex, split criteria, and variable selection approach and varied from
0.65 (prediction of competing mortality from seven-variable hip
fracture model in women based on VIMP selection criteria) to
0.81 (prediction of hip fracture from10-variable hip fracturemodel
in men based on VIMP selection criteria).

The first set of random forest models was designed to predict
both hip fracture and mortality without hip fracture using mod-
ified log-rank test to split nodes. For the models including nearly
60 variables (57 in men and 58 in women), the discrimination as
determined by the C-statistic was higher for hip fracture out-
comes (0.78 in men, 0.74 in women) than for competing mortal-
ity (0.69 in men, 0.68 in women). Using the same criteria to split
nodes, models with fewer predictors were obtained by dropping
variables with high minimal depth; discrimination of these
models with fewer independent variables (34 in men, 37 in
women) was similar to the larger models.

Fig. 1. A comparison of minimal depth and variable importance (VIMP) for hip fracture and mortality before hip fracture among older men*. *Minimal
depth obtained from model predicting both outcomes, VIMP obtained from outcome specific model. Variables with minimal depth > 10 dropped. Top
5 variables based on: (1) Minimal Depth: # Frailty components, gait speed, weight change since age 25 years, chair stand speed, grip strength). (2) Hip
fracture VIMP: Femoral neck BMD, total hip BMD, weakness (chair stand), chair stand speed, # medications). (3) Mortality VIMP: # Frailty components, slow
gait, grip strength, weakness (chair stand), gait speed).
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The next set of random forest models focused on predicting
incident hip fracture. The model with the full set of predictors
had similar discrimination for both hip fracture and mortality
before hip fracture outcomes to the first series of models predict-
ing both outcomes. Selecting only variables with fracture VIMP
>0.003, it was possible to achieve nearly the same discrimination
for hip fracture with only 10 variables in men and seven variables
in women, although the discrimination for mortality without
fracture was 0.03–0.04 lower for the smaller models than it was
for the larger models.

The final set of random forest models focused on predicting
mortality without hip fracture. The model with the full set of pre-
dictors had similar discrimination for both hip fracture and com-
petingmortality outcomes to the first series of models predicting
both outcomes.

By selecting only variables with mortality VIMP >0.003, it was
possible to obtain nearly the same discrimination for competing
mortality with only 16 variables in men and 12 variables in
women. The fracture discrimination was substantially lower
(by 0.09) for the parsimonious model compared to the larger
model in men, but remained similar in women. We note that

BMD variables were not included in the smaller model for men,
but total hip BMD remained in the smaller model for women.

Comparison Fine-Gray model

Table 3 shows subdistribution hazards (SHR) from a six-variable
comparison model constructed using the Fine-Gray method.
Among men, older age (SHR = 1.34, 95% confidence interval
[CI]: 1.00–1.80 per 5 years increase), lower femoral neck BMD
(SHR = 2.87, 95% CI: 2.26–3.64 per 1 point decrease in T-score),
and a higher number of falls in the past year (SHR = 1.23, 95%
CI: 1.05–1.44 per fall) were associated with increased risk of hip
fracture. Among women, lower femoral neck BMD (SHR = 2.26,
95%CI: 1.96, 2.60 per 1 point decrease in T-score) and recent frac-
ture (SHR = 1.55, 95% CI: 1.15, 2.09 recent versus none after age
50 years) were associated with increased risk of hip fracture.
Among both men and women, older age, greater number of
chronic conditions, greater number of frailty components were
associated with increased mortality without hip fracture, and
among women lower BMD was also associated with increased
mortality without hip fracture.

Fig. 2. A Comparison of Minimal Depth and Variable Importance (VIMP) for Hip Fracture and Mortality before Hip Fracture Among Older Women*.
*Minimal depth obtained from model predicting both outcomes, VIMP obtained from outcome specific model. Variables with minimal depth >9.5
dropped. Top 5 variables based on: (1) Minimal depth: Total hip BMD, gait speed, weight change since age 25 years, femoral neck BMD, age. (2) Hip frac-
ture VIMP: Femoral neck BMD, total hip BMD, weight change since age 25 years, gait speed, weight. (3) Mortality VIMP: Gait speed, weight change since
age 25 years, age, weakness (chair stand), difficulty walking 3 blocks.
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The random forest models with all predictors based on pre-
dicting both outcomes offered a slight improvement in the
point estimate for the discrimination of mortality before hip
fracture for both men (C-statistic 0.69 versus 0.67) and women
(C-statistic 0.68 versus 0.65) compared with the simple

Fine-Gray models. In contrast, the random forest models
offered no clear advantage for the discrimination of hip fracture
compared with the simple Fine-Gray models. In fact, the perfor-
mance of the Fine-Gray models for the prediction of hip frac-
ture was comparable to the most parsimonious random forest

Table 2. Variable Selection and Model Performance for Specific Random Forest Models

Split rule outcome Variable selection Number of variables Fracture C-statistic Mortality C-statistic

Men
Both None 57 0.78 0.69

Minimal depth 34 0.78 0.69
Fracture None 57 0.79 0.69

Variable importance 10 0.81 0.65
Mortality None 57 0.77 0.70

Variable importance 16 0.68 0.68
Women
Both None 58 0.74 0.68

Minimal depth 37 0.75 0.68
Fracture None 58 0.74 0.68

Variable importance 7 0.73 0.65
Mortality None 58 0.74 0.67

Variable importance 12 0.73 0.67

All models were run with particular random seed. Minimal depth selected variables shown in Fig. 1 and Table S3. Outcome specificmodels were run with
restricting to variables with variable importance (VIMP) > 0.003 as noted below.
Hip fracture in men (n = 10): femoral neck BMD, total hip BMD, weak (chair stands), chair stand speed, # medications, mobility score, fall history, gait

speed, difficulty walking 3 blocks, dementia.
Mortality in men (n = 16): # frailty components, slow (gait speed), grip strength, weak (chair stands), gait speed, age, shrinking (weight loss), chair stand

speed, difficulty walking 3 blocks, dementia, weak (grip strength), mobility score, loop diuretic use, heart failure, % of weight at age 25 years, # chronic
conditions.
Hip fracture in women (n = 7): femoral neck BMD, total hip BMD, % of weight at age 25 years, gait speed, weight, slow (gait speed), fracture history.
Mortality in women (n = 12): gait speed, % of weight at age 25 years, age, weak (chair stands), difficulty walking 3 blocks, weight, total hip BMD,mobility

score, coronary heart disease, # frailty components, chair stand speed, loop diuretic use.

Table 3. The Association Between Selected Risk Factors and 5-Year Risk of Hip Fracture Based on Simple Competing Risk Model in Men
and Women

Hip fracture Mortality

Parameter SHR 95% CI SHR 95% CI

Men (n = 3989) 123 hip fractures, 922 deaths
Age (per 5 year increase) 1.34 (1.00, 1.80) 1.35 (1.20, 1.51)
Femoral neck BMD (per 1 SD decrease) 2.87 (2.26, 3.64) 1.05 (0.98, 1.12)
Fracture history

None after age 50 years Ref Ref
After 50 years, >5 years ago 1.13 (0.74, 1.74) 0.90 (0.76, 1.06)
Recent (≤5 years ago) 1.43 (0.85, 2.38) 1.07 (0.86, 1.33)

Number of falls in last 12 months (per fall) 1.23 (1.05, 1.44) 1.00 (0.94, 1.07)
Number of chronic conditions (per condition) 1.12 (0.98, 1.29) 1.18 (1.12, 1.24)
Number of frailty components (per component) 1.03 (0.88, 1.19) 1.39 (1.31, 1.47)
C-statistic for full model 0.80 95% CI (0.76, 0.83) 0.67 95% CI (0.65, 0.68)

Women (n = 4953) 325 hip fractures, 824 deaths
Age (per 5 year increase) 1.12 (0.94, 1.34) 1.54 (1.39, 1.71)
Femoral neck BMD (per 1 SD decrease) 2.26 (1.96, 2.60) 1.11 (1.03, 1.20)
Fracture history

None after age 50 years Ref Ref
After 50 years, >5 years ago 1.13 (0.87, 1.46) 1.08 (0.93, 1.26)
Recent (≤5 years ago) 1.55 (1.15, 2.09) 1.02 (0.84, 1.25)

Number of falls in last 12 m (per fall) 1.01 (0.91, 1.12) 1.03 (0.96, 1.09)
Number of chronic conditions (per condition) 1.09 (0.99, 1.20) 1.17 (1.11, 1.24)
Number of frailty components (per component) 1.04 (0.94, 1.14) 1.23 (1.16, 1.30)
C-statistic for full model 0.73 95% CI (0.71, 0.76) 0.65 95% CI (0.63, 0.67)
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models in both men and women albeit with even fewer total
predictors (6 versus 7–10).

Discussion

Random forest models with competing risks can be used to pre-
dict hip fracture and mortality without hip fracture among the
oldest old. The main findings of the variable selection did not
yield novel strong predictors for these outcomes, but rather rein-
forced the notion that hip fracture risk models are driven in large
part by information from BMD variables, while competing mor-
tality models are driven in large part by information related to
markers or components of phenotypic frailty. Importantly, our
findings indicate that most clinical risk factors aside from these
main constructs have a modest impact on model performance
(VIMP <0.005). While one might presume that there is a best
model, results from our analyses suggest that models with very
different sets of variables, including those with fewer variables,
have very similar performance. Finally, while the point estimate
of performance of the random forest models for mortality with-
out hip fracture was in some cases better than the simple Fine-
Gray model, a salient question is whether possible improvement
in model performance outweighs increase in model complexity.
In the case of hip fracture accounting for competing risk of mor-
tality, the Fine-Gray model has similar performance to the ran-
dom forest model while being a more parsimonious model.
Parsimony enables better validation and testing of the model
using external data and enhances feasibility of model for
clinical use.

BMD is known to be a strong and consistent predictor of frac-
ture. In our analysis, both total hip and femoral neck BMD are
high-ranking variables as determined by minimal depth and
hip fracture VIMP criteria in men and women. However, in both
men and women, total hip BMD is ranked higher by minimal
depth criterion while femoral neck is ranked higher by hip frac-
ture VIMP. This suggests that total hip BMD is favored when a
simple binary predictor is needed because lower minimal depth
reflects higher likelihood of variable with randomly selected
binary cut-point to be selected at a node, whereas femoral neck
BMD is favored for overall model performance of the continuous
variable, because VIMP measures error introduced by permuta-
tion of continuous variables. The clinical relevance of this finding
is uncertain as it applies to randomly selected cut-points, while
clinical cut-points tend to be fixed (eg, T-score = �2.5).

Frailty as defined by phenotypic criteria is known to be a risk
factor for both all-cause(32) and cause-specific(33) mortality.
Among older women, phenotypic frailty has been shown to be
associated with the constellation of falls, hip fracture andmortal-
ity.(34,35) The assessment of frailty as a risk factor for mortality
does not directly address how frailty is related to mortality with-
out hip fracture as the latter might well depend on the specific
competing event. In the present study, certain components of
the frailty phenotype (gait speed and weakness) had high vari-
able importance for mortality without hip fracture among
women, while the total number of frailty components had high
variable importance for both hip fracture and mortality without
hip fracture.

Very few binary variables were rated among the top predic-
tors by any of the rankings. The notable exceptions were inability
to perform chairs stands (men) and slowness defined by gait
speed <0.6 m/s (women). Although neither measure is part of
FRAX(5) or Garvan(7) fracture risk calculators, previous research

has noted the relationship between poor physical performance
and higher risk of hip fracture in both men(36) and women.(37)

In contrast, we note that race/ethnicity (non-Hispanic white ver-
sus black/other) was not chosen in any of our random forest
models. Large population-based samples have shown variation
in hip fracture risk by race/ethnicity.(38) Our analysis suggests
that while there may be some association between this variable
and fracture risk it has limited impact on overall model discrimi-
nation because other variables were consistently chosen in pref-
erence to race/ethnicity. Likewise, few medication classes or
specific diseases were included as risk factors for hip fracture in
our models. This findingmay reflect that some of the fracture risk
attributable to these medications is related to falls and fall his-
tory. We note that variable selection based on lower MD favors
variables with more cut-points while variable selection based
on higher VIMP measures overall change in permutation model
error which again may be very small due to prevalence of the risk
factor. We also note that variable ranking does not reflect formal
statistical tests and thus interpretation should be made
accordingly.

Our approach to the machine learning was largely driven by
the study question, in particular survival time and the relevance
of the competing risk of mortality among the oldest old. Others
have used a wide spectrum of machine learning approaches that
consider hip fracture risk a classification problem, ie, they aim to
create a classifier that best separates those who have hip fracture
versus those who do not, a slightly different question amenable
to several machine learning approaches. Su and colleagues(39)

used classification and regression tree analysis in the MrOS
cohort and found that specific age and BMD cutoffs were associ-
ated with high hip fracture risk. Because our focus was strictly on
adults age of 80 years and older, it is not surprising that our
results suggest that femoral neck BMD is the dominant risk factor
in this patient population with its restricted age range. Ioannidis
and colleagues(16) used the same tree-based approach to predict
1-year fracture risk in a large Canadian long-term care cohort.
Due to the size of the cohort, the terminal nodes for the resulting
tree revealed a wide spectrum of short-term hip fracture risk
ranging from<1% to greater than 12.6%. BMDwas notmeasured
in the cohort and the major risk factor (ability to walk in the cor-
ridors) is likely to be specific to individuals residing in the long-
term care setting. The fracture discrimination in this cohort
(C = 0.67) was lower than that in many population-based
cohorts, likely attributable to the lower variation in risk, ie, lower
risk gradient and therefore discrimination. Ho-Le and col-
leagues(40) considered the use of artificial neural nets (ANNs) in
a cohort of 1187 older women in the Dubbo cohort of older
community-living Australian adults. They found that ANNs had
better sensitivity and specificity at selected cut-offs for the pre-
diction of hip fracture within 10-years than other approaches,
including logistic regression. Classical approaches rely on statis-
tical testing for the presence of interactions, but it is likely such
testing was underpowered with only 54 hip fractures in the der-
ivation cohort. The selected cohort was not limited to the oldest
old, and hence age versus BMD interactions may have been
important in hip fracture prediction in this population. Thus, in
cases where interactions are present in the underlying data a
nonparametric approach might be more efficient.

Kruse and colleagues(15) used a collection of supervised classi-
fication machine learning algorithms (including bagging, boost-
ing, random forests) as well as generalized linear models to
determine hip fracture risk from administrative claims data that
included BMD testing. Unfortunately, interpretation of the
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results of this study is challenging. Hip fracture cases and non-
cases had very different mean BMD in unadjusted analysis, but
other variables that were similar in cases and controls had higher
variable importance. The exceptional performance of the associ-
ated model (test area under the curve [AUC] �0.90) is difficult to
explain unless the chosen variables (ie, particular tests including
dental consultations and expenditures) were in some way a
proxy of clinical diagnosis or treatment of osteoporosis. The
black-box nature of the models in this study limits assessment
and interpretation of its findings.

Engels and colleagues(14) used a super-learner algorithm based
on combination of machine learning and regression analysis to
assess hip fracture risks factors from claims data. The super-learner
model had acceptable performance, but was slightly inferior to
that of logistic regression and other component algorithms in
the validation set. Thus, although nonparametric approaches
may in general be useful, they add a layer of complexity that
may not improve model performance. The dominant risk factor
for hip fracture is hip BMD, and this risk factor is a robust predictor
of hip fracture in parametric and semiparametric models. Hence,
the additional flexibility of other modeling approaches may be
of limited advantage in hip fracture prediction.

There are many potential advantages to using competing risk
random forest models. These advantages include that models
are tolerant of highly correlated predictors and there is no need
to specify functional form and possible interactions. Although
there are algorithms to automate assessment of functional form
in classical regression models, these algorithms become chal-
lenging when the number of potential predictors increase. The
assessment of pairwise interactions is also challenging with a
large number of candidate predictors. Random forests leverage
the underlying flexibility of tree-based models and can model
nonlinear relationships as well as pairwise and higher-order
interactions. The downside of this flexibility is that there are no
equations linking the variables with the estimated risk. Our
results show that despite these theoretical benefits, the use of
these models for the prediction of hip fracture and mortality
before hip fracture does not exceed a simple model that lacks
the model flexibility of random forests.

One of the practical implications of the random forest model
construction is that there is no way to replicate predictions with-
out an actual forest. Future predictions thus require the original
forest (including the original data) or a new forest that replicates
the predictions with synthetic data. Model development is also
more complex as each data set would generate a differentmodel
and there is no easy way to compare model parameters. Hence,
validation of prediction models in separate population cohorts is
likely to be challenging. It is possible for models with entirely dif-
ferent component variables to result in nearly identical predic-
tions. It is also possible for models with exactly the same
component variables to end up with different predictions due
to differences due to construction (bootstrap samples, variable
choice and cut-points at each node). Further research is needed
to develop appropriate decision rules regarding inclusion of pre-
dictors in different contexts. Finally, models created above are
not designed to assess causal relationships, ie, the fact that cor-
ticosteroids were not selected as an important risk factor for
hip fracture risk prediction is not related to causal risk, which
should be assessed by different models.

A key limitation of risk prediction or prognostic models is that
model performance can never be perfect as they are designed
for prediction of future events rather than diagnosis or classifica-
tion of disease. Results of our random forest competing risk

analyses suggest that addition of clinical risk factors yields only
a modest improvement for discrimination of future hip fracture
events in late-life adults over that obtained with a models based
primarily on total hip and femoral neck BMD. Previous studies in
younger participants suggest that including hip structure charac-
teristics that determine bone strength may further improve hip
fracture prediction beyond that provided by models based on
standard DXA (areal) BMD,(41) but incorporating such measures
is beyond the scope of the present analysis.

In this study of late-life adults, we used random forest models
accounting for the competing mortality risk to construct predic-
tion models for hip fracture and competing mortality before hip
fracture. Our results indicate that although there are overlapping
risk factors for hip fracture and competing mortality, hip BMD
dominates models predicting hip fracture, while components
of phenotypic frailty dominate models predicting death without
hip fracture. Advantages of this method included model flexibil-
ity and seamless imputation of missing data, but these were
counterbalanced by limitations including increasingmodel com-
plexity and difficulties of model validation. In summary, we
found that a standard parsimonious Fine-Gray model based on
major clinical risk factors for hip fracture and mortality may be
most appropriate for shared clinical decision-making regarding
whether or not to initiate and continue osteoporosis drug treat-
ment in late-life adults.
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